Saved Bookmarks
| 1. |
Find the range of the following functions given by `f(x)=(3)/(2-x^(2)) " "` (ii) `f(x)=1-|x-2|` (iii) `f(x)=|x-3| " "` (iv) `f(x)=1+3 cos 2x` |
|
Answer» We have, `f(x)=(3)/(2-x^(2))` Let y=f(x) Then, `y=(3)/(2-x^(2))rArr 2-x^(2)=(3)/(4)` `rArr x^(2)=2-(3)/(y)rArrx=sqrt((2y-3)/(y))` x assums real values, if `2y-3ge0 and ygt0 rArr y ge (3)/(2)` `:.` Range of `f=[(3)/(2),oo)` (ii) We known that, `|x-2|ge or rArr-|x-2|le0` `rArr 1-|x-2|le1 rArrf(x)le1` `:.` Range of `f=(-oo,1]` (iii) We know, that, `|x-3|leorrArrf(x)ge0` `:.` Rang of `f=0,oo]` (iv) We hnow that, `-1le cos2xle1rArr-3le3cos2xle3` `rArr 1-3le1+3cos2xle1+3rArr-2le1+3cos2xle1+3` `rArr -2lef(x)le4` `:.` Range of `f=[-2,4]` |
|