Saved Bookmarks
| 1. |
Find the point on the curve `y^2=4x`which is nearest to the point (2, 1). |
|
Answer» `B(x_o,y_o)` normal at B passes through A `(y-y_o)=-1/(dy/dx)*(x-x_o)` `(y-y_o)=-y_o/2(x-x_o)``1-y_o=-y_o +(x_oy_o)/2` `x_oy_o=2` `y_o^2=4x_o` `x_oy_o*y_o^2=2*4x_o` `y_o^3=8` `y_o=2` `x_o=1` point(1,2). |
|