1.

Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/x dy=0,`given that `y=1`when `x=0`

Answer» `e^xdx(sqrt(1-y^2))+ydy(1/x)=0`
`xe^xdxsqrt(1-y^2)+ydy=0`
`xe^xdx=((-y)dy)/sqrt(1-y^2)`
integrating both side
`intxe^xdx=int(-y)dy/sqrt(1-y^2)`
`intxe^xdx=x inte^xdx-intdx/dx*inte^xdxdx`
`xe^x-inte^xdx=xe^x-e^x`
`1/2t^(1/2)/(1/2)=sqrtt`
`sqrt(1-y^2)`
`xe^x-e^x=sqrt(1-y^2)+c`
`c=-1`
`xe^x-e^x=sqert(1-y^2)-1`
`(x-1)e^x+1=sqrt(1-y^2)`.


Discussion

No Comment Found

Related InterviewSolutions