1.

Find the multiplicative inverse of the following complex numbers : 1 – i

Answer»

Given complex number is Z=1-i 

We know that the multiplicative inverse of a complex number Z is Z-1 (or) \(\frac{1}{z}\)

⇒ Z-1 = \(\frac{1}{1-i}\)

Multiplying and dividing with 1+i

⇒ Z-1 = \(\frac{1}{1-i}\times \frac{1+i}{1+i}\) 

⇒ Z-1 = \(\frac{1+i}{1^2-(i)^2}\) 

We know that i2=-1

⇒ Z-1 = \(\frac{1+i}{1-(-1)}\) 

⇒ Z-1 = \(\frac{1+i}{2}\) 

∴ The Multiplicative inverse of 1-i is \(\frac{1+i}{2}\)



Discussion

No Comment Found