1.

Find the multiplicative inverse of the following complex numbers : √5 + 3i

Answer»

Given complex number is Z= √5+3i

We know that the multiplicative inverse of a complex number Z is Z-1 (or) \(\frac{1}{Z}\).

⇒ Z-1 =  \(\frac{1}{√{5} + 3i}\)

Multiplying and dividing with  √5+3i

⇒ Z-1  =\(\frac{1}{√5+3i}\times\frac{√5- 3i}{√5- 3i}\)

⇒ Z-1  = \(\frac{√5 - 3i}{(√5 )^2-(3i)^2}\)

⇒ Z-1  =  \(\frac{√5+3i}{5-9i^2}\)

We know that i2=-1

⇒ Z-1  = \(\frac{√5+3i}{5-9(-1)}\)

⇒ Z-1  = \(\frac{√5+3i}{14}\)

∴ The Multiplicative inverse of √5+3i is \(\frac{√5+3i}{14}\)



Discussion

No Comment Found