1.

Find the integral of \(\frac{cos^2⁡x-sin^2⁡x}{7 cos^2⁡x sin^2⁡x}\).(a) –\(\frac{1}{7}\) (cot⁡x-tan⁡x)+C(b) –\(\frac{1}{7}\) (cot⁡x-2 tan⁡x)+C(c) –\(\frac{1}{7}\) (cot⁡x+tan⁡x)+C(d) –\(\frac{1}{7}\) (2 cot⁡x+3 tan⁡x)+CThe question was posed to me during an interview.I'm obligated to ask this question of Methods of Integration-2 topic in portion Integrals of Mathematics – Class 12

Answer»

Right CHOICE is (C) –\(\FRAC{1}{7}\) (cot⁡x+tan⁡x)+C

Explanation: To find: \(\int \frac{cos^2⁡x-sin^2⁡x}{7 \,cos^2⁡x \,sin^2⁡x} DX\)

\(\int \frac{cos^2⁡x-sin^2⁡x}{7 \,cos^2⁡x \,sin^2⁡x} dx=\frac{1}{7} \int \frac{1}{sin^2⁡x}-\frac{1}{cos^2⁡x} dx\)

=\(\frac{1}{7} \int cosec^2 x-sec^2⁡x dx\)

=\(\frac{1}{7}\) (-cot⁡x-tan⁡x)+C

=-\(\frac{1}{7}\) (cot⁡x+tan⁡x)+C.



Discussion

No Comment Found

Related InterviewSolutions