1.

Find the inradius of an equilateral triangle of side 10 cm user r = A/s

Answer»

Side of equilateral triangle is a = 10 cm.

∴ s = semi perimeter of triangle \(=\frac{a+b+c}{2}=\frac{10+10+10}{2}\)

= 30/2 = 15 cm

And K = Area of equilateral triangle \(=\frac{\sqrt3}{4}a^2=\frac{\sqrt3}{4}\times10^2\) = 25√3 cm2

Now, inradius of the equilateral triangle is r = K/s \(=\frac{25\sqrt3}{15}=\frac{5\sqrt3}{3}\,cm.\)

or

inradius = r \(=\sqrt{\frac{(s-a)(s-b)(s-c)}{s}}\)

\(=\sqrt{\frac{(15-10)(15-10)(15-10)}{15}}\)

\(=\sqrt{\frac{5\times5\times5}{15}}=\sqrt{25/3}\) = 5/√3 = 5√3/3 cm



Discussion

No Comment Found

Related InterviewSolutions