1.

Find the gravitational force of attraction between the moon and the earth if the mass of the moon is \( 1 / 81 \) times the mass of earth. \( G= \) \( 6.67 \times 10^{-11} N m ^{2} / kg ^{2} \), radius of moon's orbit is \( 3.58 \times 10^{5} km \). Mass of the earth \( =6 \times 10^{24} Kg \).

Answer»

Given mass of earth Me = 6 x 1024 kg

Mass of moon Mn \(\frac{6\times10^{24}}{81}\)

Mn = 7.4 x 1022 kg

r = 3.58 x 105 km

Attraction force = \(\frac{GM_1M_2}{r^2}\) 

 = \(\frac{6.67\times10^{-11}\times6\times10^{24}\times7.4\times10^{22}}{(3.58\times10^8)^2}\) 

 = \(\frac{296\times10^{35}}{12.81\times10^{16}}\)

F = 23.10 x 1019 N



Discussion

No Comment Found

Related InterviewSolutions