Saved Bookmarks
| 1. |
Find the general solution of the following differential equation:cos x(1 + cos y)dx – sin y(1 + sin x)dy = 0 |
|
Answer» Given: cosx(1 + cos y)dx - sin y(1 + sin x)dy = 0 Dividing the whole equation by (1 + sin x)(1 + cos y), we get, ⇒ \(\frac{\int{cosx\,dx}}{1+sin\,x}\) = \(\frac{\int{cosy\,dy}}{1+sin\,y}\) ⇒ log| 1 + sin x | + log|1 + cos y| = log c ⇒ (1 + sin x)(1 + cos y) = c |
|