1.

Find the general solution of the differential equations:`(dx)/(dy)+secx y=tanx(0lt=x

Answer» `(dy)/(dx)+y sec x=tanx`
Here, `P=secx` and `Q= tanx`
`:. I.F.=e^(intPdx)=e^(intsecx)`
`=e^(log(secx+tanx))`
`=secx+tanx`
and general solution :
`y(secx+tanx)=inttanx(secx+tanx)dx+c`
`=int(secx+tanx+sec^(2)x-1)dx+c`
` impliesy(secx+tanx)=secx+tanx-1+c`


Discussion

No Comment Found

Related InterviewSolutions