Saved Bookmarks
| 1. |
Find the general solution of the differential equations:`(dx)/(dy)+secx y=tanx(0lt=x |
|
Answer» `(dy)/(dx)+y sec x=tanx` Here, `P=secx` and `Q= tanx` `:. I.F.=e^(intPdx)=e^(intsecx)` `=e^(log(secx+tanx))` `=secx+tanx` and general solution : `y(secx+tanx)=inttanx(secx+tanx)dx+c` `=int(secx+tanx+sec^(2)x-1)dx+c` ` impliesy(secx+tanx)=secx+tanx-1+c` |
|