1.

Find the following products:\((-\frac{7}{4}ab^2c-\frac{6}{25}a^2c^2)(-50a^2b^2c^2)\)

Answer»

(\(\frac{-7}{4}\)ab2c - \(\frac{6}{25}\)a2c2) (-50a2b2c2)

= \(\frac{-7}{4}\)ab2c × -50a2b2c2 - \(\frac{6}{25}\)a2c2 × -50a2b2 × c2

= \(\frac{7}{4}\) × 50 × a3 × b4 × c3 - \(\frac{6}{25}\) × - 50 × a4 × b2 × c4

= \(\frac{350}{4}\)a3b4c3 + 12a4b2c4

= \(\frac{175}{2}\)a3b4c3 + 12a4b2c4

here the product is given as

[\((-7/4) \) ab2c - \(6/25\) a2c2 ] (-50a2b2c2)

\(225/2\) a3b4c3 + 12 a4b2c4



Discussion

No Comment Found