1.

Find the equation of the locus of P, if A = (2, 3), B = (2, –3) and PA + PB = 8.

Answer»

Given A = (2, 3) 

B = (2, –3) 

Let P(x, y) be any point on the locus. 

Given geometric condition is 

PA + PB = 8 ⇒ PA = 8 – PB 

⇒ PA2 = (8 – PB)

⇒ PA2 = 64 + PB2 – 16PB

⇒ (x – 2)2+(y – 3)= 64 + (x – 2)2 + (y + 3)2 - 16√((x - 2)2 + (y + 3)2)

⇒ y2 – 6y + 9 – y2 – 6y – 9 – 64 = – 16√(x2 - 4x + 4 + y2 + 6y + 9)

⇒ (–12y – 64) = –16√(x2 + y2 - 4x + 6y + 13)

⇒ (3y + 16) = 4√(x2 + y2 - 4x + 6y + 13) 

S.O.B.S

⇒ (3y + 16)2 = 16 (x2 + y2 – 4x + 6y + 13) 

⇒ 9y2 + 256 + 96y = 16x2 + 16y2 – 64x + 96y + 208 

⇒ 16x2 + 7y2 – 64x – 48 = 0

∴ The locus of P is 16x2 + 7y2 – 64x – 48 = 0



Discussion

No Comment Found

Related InterviewSolutions