| 1. |
Find the equation of a circle with Centre (a cos ∝, a sin ∝) and radius a |
|
Answer» The general form of the equation of a circle is: (x - h)2 + (y - k)2 = r2 Where, (h, k) is the centre of the circle. r is the radius of the circle. Substituting the centre and radius of the circle in he general form: (x - (a cos ∝))2 + (y - (a sin ∝))2 = a2 ⇒ (x - a cos ∝)2 + (y - a sin ∝)2 = a2 ⇒ x2 - 2xacos α + a2 cos2 α + y2 - 2yasin α + a2 sin2 α = a2 ⇒ x2 + y2 + a2 (cos2 α + sin2 α) - 2a(xcos α + ysin α) = a2 ⇒ x2 + y2 + a2 - 2a(xcos α + ysin α) = a2 …((cos2α + sin2α) = 1) ⇒ x2 + y2 - 2a(xcos α + ysin α) = 0 equation of a circle with Centre (a cos ∝, a sin ∝) and radius a is: x2 + y2 - 2a(xcos α + ysin α) = 0 |
|