1.

Find the equation of a circle with Centre (a cos ∝, a sin ∝) and radius a

Answer»

The general form of the equation of a circle is: 

(x - h)2 + (y - k)2 = r2 

Where, (h, k) is the centre of the circle. 

r is the radius of the circle. 

Substituting the centre and radius of the circle in he general form:

(x - (a cos ∝))2 + (y - (a sin ∝))2 = a2 

⇒ (x - a cos ∝)2 + (y - a sin ∝)2 = a2 

⇒ x2 - 2xacos α + a2 cos2 α + y2 - 2yasin α + a2 sin2 α = a2 

⇒ x2 + y2 + a2 (cos2 α + sin2 α) - 2a(xcos α + ysin α) = a2 

⇒ x2 + y2 + a2 - 2a(xcos α + ysin α) = a2 …((cos2α + sin2α) = 1) 

⇒ x2 + y2 - 2a(xcos α + ysin α) = 0 

equation of a circle with Centre (a cos ∝, a sin ∝) and radius a is:

x2 + y2 - 2a(xcos α + ysin α) = 0



Discussion

No Comment Found

Related InterviewSolutions