1.

Find the domain and range of f(x) = \(\sqrt{16-x}\).

Answer»

if you mean f(x)=  16√-x    then, as the root is an even integer, the unknown under the root must take a negative value to reverse the negative sign of (-x) into a positive value. SO the domain will take the non-positive portion of the x-axis -> (-∞,0]

the range will be [0,∞)    the non-negative portion of the y-axis

hope that helps 

f(x) = \(\sqrt{16-x}\) 

\(\because\) Domain of square root function \(\sqrt{g(x)}\) is g(x) \(\geq 0\).

\(\therefore\) For Domain of given function f(x)

96 - x \(\geq 0\)

⇒ x \(\leq\) 16

⇒ x \(\in\) (-\(\infty\), 16].



Discussion

No Comment Found

Related InterviewSolutions