| 1. |
Find the directional derivative of xyz3 + xz at (1,1,1) in the direction of normal to the surface 3xy2 +y = z at (0, 1,1). |
|
Answer» Let \(\vec f = xyz^3 + xz\) Grad f = \(\vec \triangledown f = \left(\hat i \frac{\partial }{\partial x} + \hat j \frac{\partial}{\partial y} + \hat k \frac{\partial}{\partial z}\right)\) \((xyz^3 + xz)\) \(= \hat i (yz^3 + z) + \hat j(xz^3) + \hat k(3xyz^2 + x)\) (Grad f) (1, 1, 1) = \(2\hat i + \hat j + 4\hat k\) Given surface is \(3x^2 + y = z\) ⇒ \(3xy^2 + y - z = 0 = s\) (Let) Grad s = \(\vec \triangledown s = \left(\hat i \frac{\partial }{\partial x} + \hat j \frac{\partial}{\partial y} + \hat k \frac{\partial}{\partial z}\right)\) \((3xy^2 + y - z)\) \(= \hat i (3y^2) + \hat j(6xy +1)+ \hat k (-1)\) (Grad s) (0, 1, 1) = \(3\hat i + \hat j - \hat k\) Directional derivative of xyz3 + xz at (1, 1, 1) in the direction of normal to the surface 3xy2 + y = z at (0, 1, 1) \(= (grad \,f)_{(1,1, 1)}\, . \frac{(grad f)_{(0,1,1)}}{|(grad\, f)_{(0,1,1)}|}\) \(= (2\hat i + \hat j + 4\hat k)\,. \frac{(3\hat i + \hat j - \hat k)}{|3\hat i + \hat j - \hat k|}\) \(= \frac{6 + 1 - 4}{\sqrt{9 + 1 +1}}\) \(= \frac 3{\sqrt{11}}\) |
|