Saved Bookmarks
| 1. |
Find the charge on the three capacitors shown in figure. (a) (b) |
Answer» Solution :(a) The CELLS is parallel can be replaced by a single cell. `E = (C_1 E_1 + C_2 E_2)/(C_1+ C_2) = (3 xx 10 + 6 xx 40)/(3 + 6) = (30 + 240)/(9) = 30 V` `C = C_1 + C_2 = 3 + 6 = 9 mu F` `V' = ((9)/(9 + 18)) xx 30 = 10 V` `V_A - V_B = 10 V` Now return to previous diagram : Branch `A xx B` `V_A - (Q_2)/(3) - 10 = V_B` `V_A - V_B - 10 = (Q_2)/(3)` `10 - 10 = (Q_2)/(3) rArr Q_2 = 0` Branch `A Y B` : `V_A -(Q_1)/(6) - 40 = V_B` `V_A -V_B - 40 = (Q1)/(6)` `10 -40 = (Q_1)/(6) rArr Q_1 = - 180 mu C` `Q_1 + Q_2 = -180 mu C` Charge on capacitor `3 mu F : 0 , 18 mu F: 180 mu C, 6 mu F : 180 mu C`. Alternatively by Kirchoff's rules Assume charge in branches, balancing at junctions. LEFT loop : `V_A - (Q_2)/(3) -10 -((Q_1 + Q_2))/(18) = V_A` `-Q_1 - 7 Q_2 = 180` `Q_1 + 7 Q_2 = -180`....(i) Right loop : `V_A -(Q_1)/(6) - 40 -(Q_1 + Q_2)/(18) = V_A` `4 Q_1 + Q_2 = - 720` Solving (i) and (ii) `Q_1 = -180 mu C, Q_2 = 0` (b) `E = (20 xx 12 - 10 xx 6)/(12 + 6) = 10 V` `C = 12 + 6 = 18mu F` `V' = ((80)/(18 + 9)) xx 10 = (20)/(3) V` charge on `9 mu F : 9 xx (20)/(3) = 60 mu C` Branch `AXB` : `V_A - 20 + (Q_1)/(12) = V_B` `(Q_1)/(12) = V_B - V_A + 20 = -(20)/(3) + 20 = (40)/(3)` `Q_1 = 160 mu C` Branch `AYB` : `V_A + 10 + (Q_1)/(6) = V_B` `V_A - V_B + 10 = - (Q_2)/(6)` `(20)/(3) + 10 = (-Q_2)/(6)` `Q_2 =- 100 mu C` CHECK : `Q_1 + Q_2 = 60 mu C, O.K.` ( c) `E = (30 xx 2 +15 xx 4 + 20 xx 6)/(2 + 4+ 6) = 20 V` `C = 2 + 4 + 6 = 12 mu F` `V_B - V_A = 20 V` `AXB` : `V_A + 30 - (Q_1)/(2) = V_B rArr V_A - V_B + 30 = (Q_1)/(2)` `-20 + 30 = (Q_1)/(2) rArr Q_1 = 20 mu C` `AYB` : `V_A + 15 -(Q_2)/(4) = V_B rArr V_A - V_B + 15 = (Q_2)/(4)` `-20 + 15 = (Q_2)/(4) rArr Q_2 = -20 mu C` Check `AZB` : `V_A + 20 -(Q_1 + Q_2)/(6) = V_B` `V_A - V_B + 20 = (Q_1 +Q_2)/(6)` `-20 + 20 = (Q_1 + Q_2)/(6)` `Q_1 + Q_2 = 0`. |
|