Saved Bookmarks
| 1. |
Find the capacitance in shown figure A. `(2KAepsilon_(0))/((K+1)d)`B. `(2KAepsilon_(0))/d`C. `((K+1)Aepsilon_(0))/(2d)`D. `(2KAepsilon_(0))/((K^(2)+1)d)` |
|
Answer» Correct Answer - A The combination is same as the two capacitors are connected in series and distance between plates of each capacitor is `d//2`. So, `C_(1) = (Kepsilon_(0)A)/(d//2)` and `C_(2) = (epsilon_(0)A)/(d//2)` Hence, `C_("net") = (C_(1)C_(2))/(C_(1)+C_(2))=(((2Kepsilon_(0)A)/(d))((2epsilon_(0)A)/d))/(((2Kepsilon_(0)A)/(d))+((2epsilon_(0)A)/d))=(2KAepsilon_(0))/((K+1))d` |
|