| 1. |
Find the area of pentagon ABCDE in which BL ⊥ AC, CM ⊥ AD and EN ⊥ AD such that AC = 10 cm, AD = 12 cm, BL = 3 cm, CM = 7 cm and EN = 5 cm. |
|
Answer» Given: A pentagon ABCDE BL \(\perp\) AC, CM \(\perp\) AD and EN \(\perp\) AD AC = 10 cm AD = 12 cm BL = 3 cm CM = 7 cm EN = 5 cm Here, Area (Pent. ABCDE) = area (\(\triangle\)ABC) + area (\(\triangle\)ACD) + area (\(\triangle\)ADE) Area of triangle = \(\frac{1}{2}\)× (base) × (height). Here, Area (\(\triangle\)ABC) = \(\frac{1}{2}\)× (AC) × (BL) = \(\frac{1}{2}\)× (10) × (3) = 15 cm2. Area (\(\triangle\)ACD) = \(\frac{1}{2}\)× (AD) × (CD) = \(\frac{1}{2}\)× (12) × (7) = 42 cm2. Area (\(\triangle\)ADE) = \(\frac{1}{2}\)× (AD) × (EN) = \(\frac{1}{2}\)× (12) × (5) = 30 cm2. ∴ Area (Pent. ABCDE) = area (\(\triangle\)ABC) + area (\(\triangle\)ACD) + area (\(\triangle\)ADE) = 15 + 42 + 30 = 87 cm2. ∴ Area (Pent. ABCDE) = 87 cm2. |
|