1.

Find the area of a rhombus if its vertices are A(3, 0), B(4, 5), C(–1, 4) and D(–2, –1).

Answer»

Given that,

A(3, 0), B(4, 5), C(–1, 4)and D (–2, –1) are vertices of rhombus. 

We know that,

Area of rhombus = \(\frac{1}{2}\) × product of diagonals 

= \(\frac{1}{2}\) × AC × BD 

Now, 

AC = \(\sqrt{(−1 − 3)^2 + (4 − 0)^2}\) 

(By distance formula)

= \(\sqrt{16 + 16}\)

= 4√2. 

And BD= \(\sqrt{(−2 − 4) ^2 + (−1 − 5) ^2}\) 

= \(\sqrt{36 + 36}\) 

= 6√2. 

∴ Area of rhombus = \(\frac{1}{2}\) × AC × BD 

= \(\frac{1}{2}\) × 4√2 × 6√2 

= 24 square units.

Hence,

Area of rhombus = 24 square units.



Discussion

No Comment Found

Related InterviewSolutions