Saved Bookmarks
| 1. |
Find the 4th term in AP whose sum is 20 and the sum of whose square is 120. |
| Answer» Let the terms\xa0be\xa0a\xa0– 3d,\xa0a\xa0– d,\xa0a\xa0+ d, a+3dSum of the terms = (a\xa0– 3d) + (a\xa0– d) + (a\xa0+ d) + (a\xa0+ 3d) = 204a\xa0= 20a\xa0= 5Sum of the squares of the term = (a\xa0– 3d)2\xa0+ (a\xa0– d)2\xa0+ (a\xa0+ d)2\xa0+ (a\xa0+ 3d)2\xa0= 20a2\xa0– 6ad + 9d2\xa0+\xa0a2\xa0– 2ad + d2\xa0+\xa0a2\xa0+ 2ad + d2\xa0+\xa0a2\xa0+ 6ad + 9d2\xa0= 1204a2\xa0+ 20d2\xa0= 120 – – – – – – – – – – – – (a)Substituting\xa0a\xa0= 5 into (a)4(52) + 20d2\xa0= 120100 + 20d2\xa0= 120d =\xa0±\xa01d =\xa0± 1Thus, the four numbers are:Taking d = 1(a\xa0– 3d), (a\xa0– d), (a\xa0+ d), (a\xa0+ 3d) = (5 – 3), (5 – 1), (5 + 1), (5 + 3)\xa0= 2, 4, 6, 8Taking d = -1(a\xa0– 3d), (a\xa0– d), (a\xa0+ d), (a\xa0+ 3d)= (5 + 3), (5 + 1), (5 - 1), (5 - 3)= 8, 6, 4, 2 | |