1.

Find square root of -15-8i

Answer» Let the sq. root of √ -15-8i=+-(x+iy)On Sq. both sides we get, -15-8i=x^2+(yi)^2+2xyi-15-8i=^2-y^2+2xyi (i^2=-1)on comparing, we get, =x^2-y^2=-15 ........(1)2xy=8We know that (x^2+y^2)^2=(x^2-y^2)^2+(2xy) ^2On putting the values, we get (x^2+y^2)^2=(-15)^2+(8)^2=279(x^2+y^2)=17 .........(2)On solving (1)and(2),we get X=+-(1),y=+-(4)Hence, √-15-8i=+-(1+4i)


Discussion

No Comment Found