| 1. |
Find \(\rm \int\frac{y^2}{(y^2+2)(y^2+3)}dy\)1. \(\rm {\sqrt{2}}tan^{-1}\frac{y}{\sqrt{2}}+{\sqrt{3}}tan^{-1}\frac{y}{\sqrt{3}}+C\)2. \(\rm {-\sqrt{2}}tan^{-1}\frac{y}{\sqrt{2}}+{\sqrt{3}}tan^{-1}\frac{y}{\sqrt{3}}+C\)3. \(\rm {{2}}tan^{-1}\frac{y}{\sqrt{2}}+{{3}}tan^{-1}\frac{y}{\sqrt{3}}+C\)4. \(\rm {-{2}}tan^{-1}\frac{y}{\sqrt{2}}+{{3}}tan^{-1}\frac{y}{\sqrt{3}}+C\) |
|
Answer» Correct Answer - Option 2 : \(\rm {-\sqrt{2}}tan^{-1}\frac{y}{\sqrt{2}}+{\sqrt{3}}tan^{-1}\frac{y}{\sqrt{3}}+C\) Concept: \(\rm \int\frac{1}{x^2+a^2}dx=\frac{1}{a}tan^{-1}\frac{x}{a}+C\) Calculation: \(\rm \int\frac{y^2}{(y^2+2)(y^2+3)}dy\) Substitute y2 = x in the above integrand ⇒ \(\rm \frac{y^2}{(y^2+2)(y^2+3)}=\frac{x}{(x+2)(x+3)}\) The integrand is a proper rational fraction. So, by using the form of partial fraction, we write ⇒\(\rm \frac{x}{(x+2)(x+3)}=\frac{A}{x+2}+\frac{B}{x+3}\) ⇒ x = (A + B)x+ 3A +2B By comparing coefficient of x and constant terms on both sides, we get A + B = 1 and 3A + 2B = 0 By solving these equation, we get A = -2 and B = 3 ⇒\(\rm \frac{x}{(x+2)(x+3)}=\frac{-2}{x+2}+\frac{3}{x+3}\) Now put x = y2 in the above equation ⇒\(\rm \frac{y^2}{(y^2+2)(y^2+3)}=\frac{-2}{y^2+2}+\frac{3}{y^2+3}\) ⇒ \(\rm \int \frac{y^2}{(y^2+2)(y^2+3)}dy=\int\frac{-2}{y^2+2}dy+\int\frac{3}{y^2+3}dy\) ⇒ \(\rm \int \frac{y^2}{(y^2+2)(y^2+3)}dy= \frac{-2}{\sqrt{2}}tan^{-1}\frac{y}{\sqrt{2}}+\frac{3}{\sqrt{3}}tan^{-1}\frac{y}{\sqrt{3}}+C\) ⇒ \(\rm \int \frac{y^2}{(y^2+2)(y^2+3)}dy= {-\sqrt{2}}tan^{-1}\frac{y}{\sqrt{2}}+{\sqrt{3}}tan^{-1}\frac{y}{\sqrt{3}}+C\) Hence, option 2 is correct. |
|