Saved Bookmarks
| 1. |
Find limx→0 f(x) and limx→0 f(x) where\(f(x) = \begin{cases} 2x + 3 & x\leq0 \\ 3(x+1), & x>0 \end{cases}\) |
|
Answer» \(\lim\limits_{x \to 0^-}\) f(x) = \(\lim\limits_{x \to 0}\)(2x + 3) = 3 \(\lim\limits_{x \to {0^+}}\) f(x) = \(\lim\limits_{x \to 0}\)3(x +1) = 3 Therefore; \(\lim\limits_{x \to 0}\) f(x) = 3 \(\lim\limits_{x \to 1}\) f(x) = \(\lim\limits_{x \to 1}\) 3(x+1) = 3 x 2 = 6 |
|