1.

Find inverse of the following matrices using element (a) \( \left[\begin{array}{rr}7 & 1 \\ 4 & -3\end{array}\right] \) (b) \( \left[\begin{array}{rr}1 & 6 \\ -3 & 5\end{array}\right] \)

Answer»

(a) \(A = \begin{bmatrix} 7&1\\4&-3 \end{bmatrix}\)

\(|A| = \begin{vmatrix} 7&1\\4&-3\end{vmatrix} = -21 -4 = -25\)

\(A_{11} = (-1)^{1 + 1} (-3) = -3\)

\(A_{12} = (-1)^{1 +2}4 = -4\)

\(A_{21} = (-1)^{2 + 1}1 = -1\)

\(A_{22} = (-1)^{2 + 2} \,7 = 7\)

\(\therefore adj \,A = {C_{ij}}^T = \begin{bmatrix}-3 &-4\\-1&7\end{bmatrix}^T = \begin{bmatrix}-3 &-1\\-4&7\end{bmatrix}\)

\(\therefore A^{-1} = \frac{adj\,A}{|A|} = \frac{-1}{25} \begin{bmatrix}-3 &-1\\-4&7\end{bmatrix}\).

(b) \(B = \begin{bmatrix}1 &6\\-3&5\end{bmatrix}\)

\(|B| = \begin{vmatrix} 1&6\\-3&5\end{vmatrix} = 5+18 = 23\)

\(\therefore B^{-1} = \frac{adj\,B}{|B|} = \frac{1}{23} \begin{bmatrix}5 &-6\\3&1\end{bmatrix}\)



Discussion

No Comment Found

Related InterviewSolutions