1.

Find:I = \(\int\limits_0^2\frac{\sqrt x}{\sqrt x+\sqrt{2-x}}dx\)

Answer»

I = \(\int\limits_0^2\frac{\sqrt x}{\sqrt x+\sqrt{2-x}}dx\)----(1)

\(\therefore\) I = \(\int\limits_0^2\frac{\sqrt {2-x}}{\sqrt {2-x}+\sqrt{2-(2-x)}}dx\) 

⇒ I = \(\int\limits_0^2\frac{\sqrt {2-x}}{\sqrt x+\sqrt{2-x}}dx\) 

 By adding equations (1) and (2) we get,

2I = \(\int\limits_0^2\frac{\sqrt x+\sqrt{2-x}}{\sqrt x+\sqrt{2-x}}dx\) 

 = \(\int\limits_0^2dx\) = \((x)_0^2\) = 2 - 0 = 2

\(\therefore\) I = 2/2 = 1

⇒ \(\int\limits_0^2\frac{\sqrt x}{\sqrt x+\sqrt{2-x}}dx\) = 1



Discussion

No Comment Found

Related InterviewSolutions