1.

Find:(dy)/(dx) - 1/x y = xy2\(\frac{dy}{dx}-\frac1{x}y = xy^2\)

Answer»

\(\frac{dy}{dx}-\frac1{x}y = xy^2\) 

⇒ \(\frac1{y^2}\frac{dy}{dx}-\frac1{x}.\frac1{y}=x\)----(1)

Let \(\frac1y=z\)

Then \(-\frac{1}{y^2}\frac{dy}{dx}=\frac{dz}{dx}\) 

Then from (1), we obtain

\(-\frac{dz}{dx}-\frac1{x}z=x\) 

⇒ \(\frac{dz}{dx}+\frac1{x}z=-x\) 

\(\therefore\) I.F. = e\(\int\)pdx = e\(\int\) (1/x)dx = elog x = x

\(\therefore\) Complete solution is

y x I.F. = \(\int\)(I.F.). Q dx

⇒ y \(\times\) x = \(\int\)\(\times\) -x dx

⇒ yx = -\(\int\)x2dx

⇒ yx = \(-\frac{x^3}3+C\) 

⇒ y = \(-\frac{x^2}3+\frac{C}x\) 

Hence, solution of given differential equation is

y = \(-\frac{x^2}3+\frac{C}x\)



Discussion

No Comment Found

Related InterviewSolutions