1.

Find:d/dx cot-1((1 - x)/(1 + x))\(\frac{d}{dx}cot^{-1}(\frac{1-x}{1+x})\)

Answer»

\(\frac{d}{dx}cot^{-1}(\frac{1-x}{1+x})\)

 = \(\cfrac{-1}{1+(\frac{1-x}{1+x})^2}\) \(\frac{d}{dx}(\frac{1-x}{1+x})\)

 = \(\frac{-(1+x)^2}{(1+x)^2+(1-x)^2}\)\(\times\) \(\frac{(1+x)\times-1-(1-x)\times1}{(1+x)^2}\)

 = \(\frac{-(1+x)^2}{(1+x)^2+(1-x)^2}\) \(\times\)\(\frac{-1-x-1+x}{(1+x)^2}\)

 = \(\frac1{1+x^2}\)

∴ \(\frac{d}{dx}\)cot -1(\(\frac{1-x}{1+x}\)) = \(\frac1{1+x^2}\)



Discussion

No Comment Found

Related InterviewSolutions