1.

Factorize `1+x^4+x^8`

Answer» `1 + x^4 + x^8`
`= 1+ x^4 + x^8 + x^4 - x^4`
using `x^8 = x^4*x^4= (x^4)^2`
`= 1 + 2x^4 + x^8 - x^4`
using `(a+b)^2 = a^2 + 2ab + b^2`
`(1)^2 + 2*1*(x^4) + (x^4)^2 - x^4`
`= (x^4+1)^2 - x^4`
`= (x^4 + 1)^2 - (x^2)^2`
`= (x^4 + 1 - x^2)(x^4+1+x^2)`
`= (x^4-x^2+1)(x^4+2x^2+1-x^2`
`= (x^4-x^2+1)((x^2+1)^2-x^2)`
`= (x^4 - x^2+1)(x^2-x+1)(x^2+x+1)`
answer


Discussion

No Comment Found