1.

Express `sin^(-1).(sqrtx)/(sqrt(x + a))` as a function of `tan^(-1)`

Answer» Correct Answer - `tan^(-1) (sqrt((x)/(a)))`
Putting `x = a tan^(2) theta`
`:. Sin.^(-1) (sqrtx)/(sqrt(x + a) = sin^(-1) (sqrta sqrt(tan^(2)theta))/(sqrt(a tan^(2) theta + a))`
`= sin.^(-1) (sqrta tan theta)/(sqrta sec theta)`
`= sin^(-1) sin theta = theta = tan^(-1) (sqrt((x)/(a)))`


Discussion

No Comment Found