1.

Evaluate \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x}{\sqrt{1+2x^2}}\)

Answer» Correct Answer - Option 3 : \(\frac{1}{\sqrt 2}\)

Calculation:

We have to find the value of \(\rm \mathop {\lim }\limits_{x\rightarrow ∞} \frac{x}{\sqrt{1+2x^2}}\)

\(\rm \mathop {\lim }\limits_{x\rightarrow ∞} \frac{x}{\sqrt{1+2x^2}}\)       [Form \(\frac{∞}{∞}\)]

This limit is of the form \(\frac{∞}{∞}\), Here, We can cancel a factor going to ∞  out of the numerator and denominator.

\(\rm \mathop {\lim }\limits_{x\rightarrow ∞} \frac{x}{\sqrt{1+2x^2}}\)

\(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x}{x\sqrt{\frac{1}{x^2}+2}}\)

Factor x becomes ∞ at x tends to ∞, So we need to cancel this factor from numerator and denominator.

\(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{1}{\sqrt{\frac{1}{x^2}+2}}\)

\(\frac{1}{\sqrt{\frac{1}{\infty^2}+2}}=\frac{1}{\sqrt{0+2}}=\frac{1}{\sqrt 2}\)



Discussion

No Comment Found

Related InterviewSolutions