1.

Differentiate `tan^(-1)((sqrt(1+x^2)-1)/x) wrt sin ^(-1)((2x)/(1+x^2))dotofx (-1,1)`

Answer» `u=tan^(-1)((sqrt(1+x^2)-1)/x)`
`x=tantheta`
`u=tan^(-1)[(sqrt(1+tan^2theta)-1)/tantheta]`
`=tan^(-1)[(sectheta-1)/tantheta]`
`=tan^(-1)[(1-costheta)/sintheta]`
`u=tan^(-1)[tantheta2]=theta/2`
`u=1/2tan^(-1)x`
`du/dx=d/dx[1/2tan^(-1)x]`
`v=sin^(-1)((2x)/(1+x^2))`
Let `x=tantheta`
`v=sin^(-1)[(2tantheta)/(1+tan^2theta)]`
`(dv)/dx=2/(1+x^2)`
`(du)/dv=(du)/dx*dx/(dv)`
`(du)/(dv)=1/4`.


Discussion

No Comment Found

Related InterviewSolutions