Saved Bookmarks
| 1. |
Differentiate sin-1 (3x - 4x3) w.r.t x |
|
Answer» assuming the given function as y= sin^-1( 3x- 4x^3) Let x =sinu => dx/du = cosu then y = sin^-1(3sinu-4sin^3u)=sin^-1(sin 3u) = 3u dy/du= 3 So dy/dx = (dy/du)/(dx/du)=3/cosu= 3/[(1-sin^2u)^1/2]=3/[(1-x^2)^1/2] let y = sin-1(3x - 4x3) let x = sinθ Then 3x - 4x3 = 3sinθ - 4sin3θ = sin3θ Therefore, y = sin-1(3x - 4x3) =sin-1(sin3θ) = 3θ Now, \(\frac{dy}{dx}\) = \(\frac{dy}{dθ}\) . \(\frac{dθ}{dx}\) = 3 \(\frac{dθ}{dx}\) (∵ y = 3θ) ∵ x = sinθ ⇒ \(\frac{dx}{dθ}\) = cosθ (By differentiating w.r.t θ) ⇒\(\frac{dθ}{dx}\) = \(\frac{1}{cosθ}\) = \(\frac{1}{\sqrt{1-sin^2θ}}\) = \(\frac{1}{\sqrt{1-x^2}}\) (∴ siinθ = x) Therefore \(\frac{dy}{dx}\) = \(3\times\frac{1}{\sqrt{1-x^2}}\) (∴\(\frac{dθ}{dx}\) = \(\frac{1}{\sqrt{1-x^2}}\)) ∵ \(\frac{d}{dx}\) sin-1(3x - 4x3) = \(\frac{3}{\sqrt{1-x^2}}\) (∵ = y = sin-1(3x - 4x3)) |
|