Saved Bookmarks
| 1. |
Determine the value of `k`for which the following function is continuous at `x=3.``f(x)={(x^2-9)/(x-3)` ,`x!=3`and k when `x=3` |
|
Answer» `1) LHL = RHL` `2) LHL = RHL`= value of f(x) LHL=`lim_(x->3) (x^2 - 9)/(x-3)` `x= 3-h` `:. lim_(h->0) ((3-h)^2 - 9)/((3-h)-3)` `= lim_(h->0) (9-h^2 - 6h - 9)/((3-h) - 3)` `= lim_(h->0) (h(h-6))/(-1)` `= 6` RHL=`lim_(x->3) (x^2-9)/(x-3)` `x= 3 + h` `lim_(h->0) ((3+h)^2 - 9)/(3+h-3)` `lim_(h->0) (h^2 + 6h)/h` `lim_(h->0) h + 6 = 6` LHL=RHL = f(3) `6= k` Answer |
|