1.

Determine the value of `k`for which the following function is continuous at `x=3.``f(x)={(x^2-9)/(x-3)` ,`x!=3`and k when `x=3`

Answer» `1) LHL = RHL`
`2) LHL = RHL`= value of f(x)
LHL=`lim_(x->3) (x^2 - 9)/(x-3)`
`x= 3-h`
`:. lim_(h->0) ((3-h)^2 - 9)/((3-h)-3)`
`= lim_(h->0) (9-h^2 - 6h - 9)/((3-h) - 3)`
`= lim_(h->0) (h(h-6))/(-1)`
`= 6`
RHL=`lim_(x->3) (x^2-9)/(x-3)`
`x= 3 + h`
`lim_(h->0) ((3+h)^2 - 9)/(3+h-3)`
`lim_(h->0) (h^2 + 6h)/h`
`lim_(h->0) h + 6 = 6`
LHL=RHL = f(3)
`6= k`
Answer


Discussion

No Comment Found

Related InterviewSolutions