1.

Determine the current in each brance of the network showin in

Answer»

Solution :Applying KVL `( sum IR = sum EPSILON)` In the CLOSED loop ADCA, we get
-4 `(I_(1) - I_(2) ) + 2 (I_(2) + I_(3)- I_(1) )= -10`
`therefore 4 (I_(1) - I_(2) ) - 2 (I_(2) + I_(3) - I_(1)) + I_(1) = 10`
`therefore 7 I_(1) - 6I_(2) - 2I_(3) = 10 ""` .... (1)
Similarly for closed loop ABCDA,
` -4 I_(2) -2 (I_(2) + I_(3)) - I_(1) =- 10 `
`therefore 4I_(2) +I_(2) -2 (I_(2) + I_(3)) + I_(1) = 10`
`therefore I_(1) + 6I_(2) + 2I_(3) = 10 ""` ... (2)
For closed loop BCDEB,
` - 2 (I_(2) + I_(3)) - 2 (I_(2) + I_(3) - I_(1)) = - 5 `
` therefore 2 (I_(2) + I_(3)) + 2 (I_(2) + I_(3) - I_(1)) =5 `
`therefore 4 I_(2) + 4I_(3) - 2I_(1) = 5 `
`therefore 2I_(1) - 4I_(2) - 4I_(3) = - 5`
`therefore I_(1) - 2I_(2) - 2I_(3) = - 2.5 ""` .... (3)
Adding equations (1) and (2),
`8I_(1) = 20`
`therefore I_(1) = (5)/(2)A ""` .... (4)
Adding equations (2) and (3)
`2I_(1) + 4I_(2) = 7.5`
`therefore2 ((5)/(2)) + 4I_(2) = 7.5 `
`therefore 5 + 4I_(2) = 7.5`
`therefore I_(2) = (2.5)/(4) = (25)/(40) = (5)/(8) A "" `... (5)
Substituting values of`I_(1) and I_(2)` in EQUATION (3),
2.5 -2 `((5)/(8)) - 2I_(3) =- 2.5 `
`therefore 2.5 - (5)/(4) + 2.5 = 2 I_(3)`
`therefore 10 - 5 + 10 = 8I_(3)`
`therefore 15 = 8I_(3)`
`therefore I_(3) = (15)/(8) A ""` .... (6)


Discussion

No Comment Found

Related InterviewSolutions