1.

`Det[[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2,c^2]]=4a^2b^2c^2`

Answer» `L.H.S. = |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|`
Applying `R_1->R_1-R_2-R_3`
`= |[-2ab,-2b^2,0],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|`
`=-2 |[ab,b^2,0],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|`
Now applying `R_2->R_2-R_1,R_3 ->R_3-R_1`
`= -2 |[ab,b^2,0],[a^2,0,ac],[0,bc,c^2]|`
`=-2abc |[a,b,0],[a,0,c],[0,b,c]|`
`=-2a^2b^2c^2 |[1,1,0],[1,0,1],[0,1,1]|`
Now expanding the determinant,
`=-2a^2b^2c^2(1(-1)-1(1)+0)`
`=-2a^2b^2c^2(-2)`
`=4a^2b^2c^2=R.H.S.`


Discussion

No Comment Found