1.

Derivelensmaker'sformulafora convexlens.

Answer»

Solution :Lensmaker.sformula
LET`r_(1) and r_(2)`be theradiiof curvatureof thethinlens .
Let Obe thepointat adistanceu fromthepoleof thefirstcurvedsurfaceof thelens. Realimageis FORMEDAT I.at a distancev.fromthepole`P_(1)`thisimageis formedin thedensermedium.
Weknowthat FROMTHE refractionformula ,
`(n_1)/(-u )+(N_2)/(v)=(n_2-n_1)/(r )i.e.,(n_1)/(-u)+(n_2)/(v.)=(n_2-N_(1))/(r_1)`
Where`n_1`is therefractiveindexofrarermediumand ` n_(2)`thatof thedensermedium`(n_(2)gt n_(1))`, FOrthe secondsurface, realimageat I.willserveas - ve. Theobjectspaceis thelensme - diumfor refractivethroughthe secondcurvedsurface. finalimageis formedin AIRAT Iandat adistanceof .v.from ` P_(2)`
` (n_1)/(-u)+(n_2)/(v)=(n_2-n_1)/(r )`
` i.e.,(n_2)/(-v)+(n_1)/(v)=(n_(2)-n_(1))/(-r_2)`
Adding (1)and (2)we get
` (n_1)/(-u ) +(n_1)/(v)=(n_2-n_1)((1)/(r_(1))-(1)/(r_(2)))`
` or(1)/(-u )+(1)/(v)=(n_(2)-n_(1))/(n_(1))((1)/(r_(1))-(1)/(r_(2)))`
when`u= oo , v= f`
when `u=f , v=oo`
` therefore` Thetermon the L.H.Scan bereplacedby ` (1)/(f)`wheref is thefocallengthof lens .
`i.e.,(1)/(f)=((n_2-n_1)/(n_1))((1)/(r_1)-(1)/(r_(2)))`
Theequation(4)is calledthe lensmaker.sformula
Note:(1)usingtheequation(4) ,it canbe shownthat
`""_(1) N_(2)= 1-[(r_1r_2)/(f(r_1-r_(2)))]` where ` ""_(1)N_(2)=(n_(2))/(n_(1))`
(2)forradiusof curvaturethe letter.R.may beused .


Discussion

No Comment Found

Related InterviewSolutions