| 1. |
D2y + 2y = x2e3x + ex cos 2x. |
|
Answer» It's auxiliary equation is m2 +2 = 0 m = \(\pm\sqrt2i\) ∴ C.F. = C1 cos\(\sqrt2\)x + C2sin √2x P. I. = \(\frac1{D^2+2}x^2e^{3x}+\frac1{D^2+2}e^xcos2x\) = e3x \(\frac1{(D+3)^2+2}x^2+e^x\frac1{(D+1)^2+2}cos 2x\) = e3x\(\frac1{11+6D+D^2}x^2+e^x\frac{1}{D^2+2D+3}cos 2x\) = \(\frac{e^{3x}}{11}(1+\frac{6D+D^2}{11})^{-1}\)x2 + ex \(\frac1{-4+2d+3}cos 2x\) = \(\frac{e^{3x}}{11}(1-\frac{6D+D^2}{11}+\frac{36}{121}D^2+....)x^2\) + ex\(\frac{2D+1}{4D^2-1}cos 2x\) = \(\frac{e^{3x}}{1331}(121x^2-132x + 50)-\frac{e^x}{17}(cos 2x - 4sin 2x)\) ∴ y = C. F. + P. I. = C1cos(√2x) + C2sin(√2x) + \(\frac{e^{3x}}{1331}\)(121x2 - 132x + 50) - \(\frac{e^x}{17}\)(cos 2x - 4 sin 2x) |
|