1.

Consider the parabola `y^(2)=8x,` if the normal at a point P on the parabola meets it again at a point Q, then the least distance of Q from the tangent at the vertex of the parabola isA. `16`B. `8`C. `0`D. None of these

Answer» Correct Answer - A
`P-=(at_(1)^(2),2at_(1)),Q-=(at_(2)^(2),2at_(2))`, then
`t_(2)=-t_(1)-(2)/(t_(1))`
Here `4a =8" " therefore a=2`
Required distance,
`z=at_(2)^(2)=2(t_(1)^(2)+(4)/(t_(1)^(2))+4)=2[(t_(1)-(2)/(t_(1)))^(2)+8...(i)`
`implies zge2(8)]...(i)`
`therefore "least value of" z=16 ["from" (i)]`


Discussion

No Comment Found

Related InterviewSolutions