Saved Bookmarks
| 1. |
Consider the family ol circles `x^2+y^2=r^2, 2 < r < 5` . If in the first quadrant, the common tangnet to a circle of this family and the ellipse `4x^2 +25y^2=100` meets the co-ordinate axes at A and B, then find the equation of the locus of the mid-point of AB. |
|
Answer» Correct Answer - `4x^(2)+25y^(2)=4x^(2)y^(2)` Equation of any tangent to circle `x^(2)+y^(2)=r^(2)` is `xcostheta + y sintheta = r" "...(i)` Suppose Eq. (i) is tangent to `4x^(2) + 25y^(2)=100` or when `(x^(2))/(25)+(y^(2))/(4)=1 " at"(x_(1),y_(2))` Then, Eq, (i) and `("xx"_(1))/(25)+(yy_(1))/(4)=1` are identical `therefore (x_(1)//25)/(costheta)=((y_(1))/(4))/(sintheta)=(1)/(r)` `rArr x_(1)(25costheta)/(r),y_(1)=(4sintheta)/(r)` The line (i) meet the coordinates axes in A `(rsectheta, 0) and beta(0,r cosec theta)`. LEt (h,k) be mid-point of AB. Then , " " `h=(rsectheta)/(2)and k=(rcosectheta)/(2)` Therefore, `2h=(r)/(costheta)and 2k=(r)/(sintheta)` `therefore x_(1)=(25)/(2h)and y_(1)=(4)/(2k)` As `(x_(1), y_(1)) " lies on the ellipse " (x^(2))/(25)+(y^(2))/(4)=1` we get `(1)/(25)((625)/(4h^(2)))+(1)/(4)((4)/(k^(2)))=1` `rArr (25)/(4h^(2))+(1)/(h^(2))=1` or `25k^(2)+4h^(2)=4h^(2)k^(2)` Therefore, required locus is `4x^(2)+25y^(2)=4x^(2)y^(2)` |
|