Saved Bookmarks
| 1. |
Consider any set of 201 observations `x_(1),x_(2), …, x_(200),x_(201)`. It is given that `x_(1) lt x_(2) lt … lt x_(200) lt x_(201).` Then, the mean deviation of this set of observations about a point k is minimum, when k equalsA. `(x_(1)+x_(2)+… +x_(200)+x_(201))201`B. `x_(1)`C. `x_(101)`D. `x_(201)` |
|
Answer» Correct Answer - C Given, `x_(1) lt x_(2) lt x_(3) lt … lt x_(201)` `therefore ` Medain of the given observation `= ((20+1)/(2))th` item `=x_(101)` Now, deviations will be minimum, if we taken from the median. `therefore ` Mean deviation will be minimum, if `k=k_(101).` |
|