Saved Bookmarks
| 1. |
Consider a series `1/2+1/(2^2)+2/(2^3)+3/(2^4)+5/(2^5)+.............+(lambdan)/(2^n).` If `S_n` denotes its sum to `n` tems, then `S_n` cannot beA. 2B. 3C. 4D. 5 |
|
Answer» Correct Answer - A::B::C::D `:. S_(n)=(1)/(2)+(1)/(2^(2))+(2)/(2^(3))+(3)/(2^(4))+(5)/(2^(5))+"...."+(lambdan)/(2^(n))` ` =(3)/(4)+(1)/(4)((1)/(2)+(1)/(2^(2))+(2)/(2^(3))+(3)/(2^(4))+(5)/(2^(5))+"...."+(lambdan)/(2^(n))) +(1)/(2)((1)/(2)+(1)/(2^(2))+(2)/(2^(3))+"...."+(lambdan)/(2^(n))) -(1)/(4)-(lambda_(n))/(2^(n+2))-(lambda_(n))/(2^(n+1))` `implies S_(n)=(3)/(4)+(1)/(4)S_(n)+(1)/(2)S_(n)-(1)/(4)-(lambda_(n))/(2^(n+2))-(lambda_(n))/(2^(n+1))` `implies =(1)/(4)S_(n)=(1)/(2)-(lambda_(n))/(2^(n+2))-(lambda_(n))/(2^(n+1))implies S_(n)=2-(lambda_(n))/(2^(n+2))-(lambda_(n))/(2^(n-1))lt2` |
|