Saved Bookmarks
| 1. |
Consider a matrix `A=[a_(ij)]_(3xx3)`, where `a_(ij)={{:(i+j","if","ij=even),(i-j","if","ij=odd):}` if `b_(ij)` is cofactor of `a_(ij)` in matrix A and `c_(ij)=sum_(r=1)^(3)a_(ir)b_(jr)`, then value of `root3(det[c_(ij)]_(3xx3))` isA. `4`B. `3`C. `16`D. `5` |
|
Answer» Correct Answer - C `A=[{:(0,3,-2),(3,4,5),(2,5,0):}]because|A|=16` `thereforec_(ij)=sum_(r=1)^(3)a_(ir)b_(jr)={:{(0, if, i ne j),(|A|, if , i=j):}` `thereforedet[c_(ij)]_(3xx3)=|A|^(2)=16^(2)` `thereforeroot3(det[c_(ij)]_(3xx3))=16` |
|