1.

Calculate the mass defect, binding energy and binding energy per nucleon of an alpha particle ? (An alpha- particle is nothing but helium nucleus. Hence its symbol is ._2He^4. It contains 2 protons, 2 neutrons with a mass number 4. Mass of hydrogen atom m_H= 1.007825 u, Mass of neutron m_n = 1.008665 u, Atomic number of helium Z = 2, Mass number of helium A = 4, Mass of helium atom m_n = 4.00260 u.)

Answer»

SOLUTION :Mass defect , `DELTAM=Zm_H+(A-Z)m_n-m_a`
[(2)(1.007825)+(4-2)(1.008665)-4.00260]u
`=(2xx1.007825+2xx1.008665-4.00260)u`
Mass defect, `Deltam`=0.03038 u
`THEREFORE` Binding energy of the nucleus =`(Deltam)C^2`
`=(0.03038)uxxC^2`
`=0.03038xx931.5` MEV (`because 1uxxC^2` = 931.5 MeV)
=28.3 MeV
Binding Energy per NUCLEON = `28.3/4` MeV
Binding energy per nucleon = 7.075 MeV


Discussion

No Comment Found

Related InterviewSolutions