Saved Bookmarks
| 1. |
Calculate the concentration of `overset(Θ)OH` in the solution of base with `pH` a. `10.4771` b. `12.301` c. `11.8451` |
|
Answer» Since the solution are basic, so first calculate `pOH` of the solution and then calculate `[overset(Θ)OH]` accordingly. a. `pH = 10.4771` `pOH = 14 - 10.4771 3.5229` `pOH =- log [overset(Θ)OH] = 3.5229` `:. log [overset(Θ)OH] =- 3.5229 =- 3 - 0.5229 +1 - 1` `= bar(4).4771` `:. [overset(Θ)OH] = "Antilog" (bar(4).4771)` `= 3 xx 10^(-4) = 0.3 xx 10^(-3) N` c. `pH = 12.301` `pOH = 14 - 12.301 = 1.699` `pOH =- log [overset(Θ)OH] = 1.699` `:. log [overset(Θ)OH] =- 1.699 =- 1 - 0.699 +1 - 1` `= bar(2).301` `:. [overset(Θ)OH] = "Antilog" (bar(2).301)` `= 2 xx 10^(-2)N = 0.2 xx 10^(-1)N` d. `pH = 11.8451` `pOH = 14 - 11.8461 = 2.1549` `pOH =- log [overset(Θ)OH] =- 2.1549 =- 2 - 0.1549 +1 - 1` `= bar(3).8451` `:. [overset(Θ)OH] = "Antilog" (bar(3).8451)` `= 7 xx 10^(-3) N = 0.7 xx 10^(-2) N` |
|