| 1. |
B-2. Find the co-ordinates of point on line \( x+y=-13 \), nearest to the circle \( x^{2}+y^{2}+4 x+6 y-5=0 \)(1) \( (-6,-7) \)(2) \( (-15,2) \)(3) \( (-5,-6) \)(4) \( (-7,-6) \) |
|
Answer» Given circle x2 + y2 + 4x + 6y - 5 = 0 Differentiate w.r.t x, we get \(2x + 2y\frac{dy}{dx} + 4 + 6\frac {dy}{dx} = 0\) ⇒ \((2y + 6) \frac{dy}{dx} = - 2x - 4 \) ⇒ \(\frac{dy}{dx} = \frac{-2x - 4}{2y + 6} = \frac{-x -2}{y + 3}\) Slope of line x + y = -13 is -1. \(\therefore\) For point where slope of circle is -1, we have \(\frac {-x_1 - 2}{y_1 + 3} = -1\) ⇒ \(-x_1 - 2 = -y_1 - 3\) ⇒ \(1 -x_1 = -y_1\) ⇒ \(y_1 = x_1 - 1\) \(\therefore\) From equation of circle, we get \({x_1}^2 + (x_1 - 2)^2 + 4x_1 + 6(x_1 - 1) - 5 = 0\) ⇒ \(2{x_1}^2 - 2x_1 + 1+ 4x_1 + 6x_1 - 6-5 =0\) ⇒ \(2{x_1}^2 + 8x_1 - 10 = 0\) ⇒ \({x_1}^2 + 4x_1 - 5 = 0\) ⇒ \((x_1 + 5)(x_1 - 1) = 0\) ⇒ \(x_1 = -5 \;or\; x_1 = 1\) \(\therefore x_1 = 5\) \(\therefore\) \(y_1 = -5 - 1 = -6\) \(\therefore\) Point which on circle which is closest to line is (-5, -6). The shortest distance between line & circle = Distance of point (-5, -6) from line x + y = -13 = \(\left|\frac{-5 + (-6) + 13}{\sqrt{1 + 1}}\right| = \frac 2{\sqrt 2} =\sqrt 2 \, units\) Distance between (-5, -6) & (-6, -7) \(= \sqrt{(-6 + 5)^2 + (-7 + 6)^2} = \sqrt{1 + 1} = \sqrt 2 \, units\) & (-6, -7) lies on line x + y = -13. \(\therefore\) Point on line x + y +13 = 0 which is closet to given circle is (-6, - 7). |
|