| 1. |
An ethical hacker finds that a four digit passkey is a multiple of 3 and all its digits are distinct even digits. What is the maximum number of attempts required to be sure of the passkey? a. 24 b. 46 C. 47 d. 48 |
|
Answer» 152 Verify Rolle's THEOREM for the FUNCTION f(x) = x2 - 4x + 10 on (0,4) 152 Verify Rolle's theorem for the function f(x) = x2 - 4x + 10 on (0,4)152 Verify Rolle's theorem for the function f(x) x2 - 4x + 10 on (0,4) 152 Verify Rolle's theorem for the function f(x) = x2 - 4x + 10 on (0,4) 152 Verify Rolle's theorem for the function f(x) = x2 - 4x + 10 on (0,4)152 Verify Rolle's theorem for the function f(x) x2 - 4x + 10 on (0,4) 152 Verify Rolle's theorem for the function f(x) = x2 - 4x + 10 on (0,4) 152 Verify Rolle's theorem for the function f(x) = x2 - 4x + 10 on (0,4)152 Verify Rolle's theorem for the function f(x) x2 - 4x + 10 on (0,4) 152 Verify Rolle's theorem for the function f(x) = x2 - 4x + 10 on (0,4) 152 Verify Rolle's theorem for the function f(x) = x2 - 4x + 10 on (0,4)152 Verify Rolle's theorem for the function f(x) x2 - 4x + 10 on (0,4) 152 Verify Rolle's theorem for the function f(x) = x2 - 4x + 10 on (0,4) 152 Verify Rolle's theorem for the function f(x) = x2 - 4x + 10 on (0,4)152 Verify Rolle's theorem for the function f(x) x2 - 4x + 10 on (0,4) 152 Verify Rolle's theorem for the function f(x) = x2 - 4x + 10 on (0,4) 152 Verify Rolle's theorem for the function f(x) = x2 - 4x + 10 on (0,4)152 Verify Rolle's theorem for the function f(x) x2 - 4x + 10 on (0,4) |
|