Saved Bookmarks
| 1. |
An electron (mass m)with an initial velocity vecv=v_(0)hati is in an electric field vecE=E_(0)hatj . If l,ambda_(0)=h..mv_(0).it's de-Broglie wavelength at time t is given by |
|
Answer» `(lambda_(0))/((1+(eE_(0))/(m)-(t)/(v_(0)))` `v=v_(0)+((F)/(m))t` `THEREFORE v=v_(0)+((eE_(0))/(m))t` `therefore v=v_(0)(1+(eE_(0))/(mv_(0))t)`…..(1) `therefore VECF=qvecE` `therefore vecF=(-e)(-E_(0)hati)` `therefore vecF=eE_(0)hati` `therefore F=eE_(0)` de-Broglie wavelength ,`lambda=(h)/(mv)implieslambdaprop(1)/(v)` `therefore (lambda)/(lambda_(0))=(v_(0))/(v)` (where `lambda_(0)`=initial de-Broglie wavelength ,`lambda`=final de-broglie wavelength) `therefore lambda=(lambda_(0)v_(0))/(v)` `=(lambda_(0)v_(0))/(v_(0)(1+(eE_(0))/(mv_(0))t)` [From equation(1)] `therefore lambda=(lambda_(0))/(1+(eE_(0))/(mv_(0))t)` |
|