1.

All possible roots of polynomial with integral coefficients can be identified by "RATIONAL ROOT TEST" according to rational root test if a plynomial ltbr. `a_(n)p^(n)+a_(n-1)p^(n-1)q+a_(n-2)p^(n-2)q^(2)+`…..`+a_(2)p^(2)q^(n-2)+a_(1)pq^(n-1)+a_(0)q^(n)=0` Every term in above equation except possible the last one is divisible by `p` hence `p` should also divide `a_(0)q^(n)`, since `q` and `p` are relatively prime `p` must divide `a_(0)`. Similarly `q` also divides `a_(n)`. Now consider an equation `6x^(5)-19x^(4)-9x^(3)-16x^(2)+9x-1=0` and answer the following questions Q. if given equation and equation `x^(3)+ax^(2)+ax+1=0` have two roots common then possible value(s) of is/are?A. `0`B. `-2`C. `-3`D. `3`

Answer» Correct Answer - D
(13 to 14)
`6x^(5)-19x^(4)-9x^(3)-16x^(2)+9x-1=0`
rational roots of equation `x=+-1,+-(1)/(2),+-(1)/(2),+-(1)/(6)` are possible
`x=(1)/(6)` satisfies the equation
`6x^(5)-x^(4)-18x^(4)+3x^(3)-12x^(3)+2x^(2)-18x^(2)+3x+6x-1=0`
`(6x-1)(x^(4)-3x^(3)-2x^(2)-3x+1)=0`
`x^(4)-3x^(3)-2x^(2)-3x+1)=0`
`x^(4)-3x^(3)-2x^(2)-3x+1=0`
`x^(2)+(1)/(x^(2))-3(x+(1)/(x))-2=0`
`(x+(1)/(x))^(2)-3(x+(1)/(x))-4=0`
`t^(2)-3t-4=0`
`(t-4)(t+1)=0`
`x+(1)/(x)=4` or `x+(1)/(x)+1=0`
`x^(2)-4x+1=0` `x^(2)+x+1=0`
sum of real roots will be `4+(1)/(6)=(25)/(6)`
for rational values of a roots of cubic `x^(2)+ax^(2)+ax+1=0` will be in conjugate pair so either
`x^(2)-4x+1=0` or `x^(2)+x+1=0` is a factor of `x^(3)+ax^(2)+1=0`
if `x^(2)-4x+1=0` is a factor of `x^(3)+ax^(2)+ax+1=0` then
`a=-3` and `x^(2)+x+1=0` is a factor of `x^(3)+ax^(2)+ax+1=0` then `a=2`


Discussion

No Comment Found

Related InterviewSolutions