1.

| a²              bc        c² + ac || a² + ab     b²            Ca      |= 4a²b²c²| ab             b² + bc    c²       |

Answer»

|(a2, bc, ac+c2)(a2+ab,b2, ac(ab, b2+bc, c2)| = 4a2b2c2

\(\Delta=\begin{vmatrix}a^2&bc&ac+c^2\\a^2+ab&b^2&ac\\ab&b^2+bc&c^2\end{vmatrix}\)

Taking a, b and c common from C1, C2 and C3 respectively.

\(=abc\begin{vmatrix}a&c&a+c\\a+b&b&a\\b&b+c&a\end{vmatrix}\)

Using C1 → C1 + C2 - C3

\(=abc\begin{vmatrix}0&c&a+c\\2b&b&a\\b&b+c&c\end{vmatrix}\)

Using R2 → R2 - R3

\(=abc\begin{vmatrix}0&c&a+c\\0&-c&a-c\\2b&b+c&c\end{vmatrix}\)

Expanding along C1,

∆ = abc[0 - 0 + 2b(ca - c2 + ca + c2)]

or ∆ = abc(4abc) or ∆ = 4a2b2c2



Discussion

No Comment Found

Related InterviewSolutions