| 1. |
a(x+y)+b(x - y)=a square - ab+b square;a(x+y)- b (x - y)=a square + ab+b square. |
|
Answer» Solution: _____________________________________________________________ Given: a(x+y) + b(x-y) = a² - ab + b² ..(i)., a(x+y) - b(x-y) = a² + ab - b² ...(ii) _____________________________________________________________ To find, The values of x and y. _____________________________________________________________ Adding both the equations, We get, => a(x + y) + b(x - y) + a(x + y) - b(x - y) = a² - ab + b² + a² +ab - b² => 2a(x + y) = 2a² => x + y = a ...(iii),____________________ Subtracting (ii) from (i), => a(x + y) + b(x - y) -(a(x + y) - b(x - y)) = a² - ab + b² - (a² + ab -b²) => a(x + y) + b(x - y) - a(x - y) + b(x - y) = a² - ab + b² - a² - ab + b² => 2b(x - y) = -2ab + 2b² => 2b(x - y) = 2b² - 2ab => 2b(x - y) = 2b(b - a) => x - y = b - a ..(iv) _______________________ Adding (iii) & (iv), We get, => (x + y) + (x - y) a + b- a => 2x = b => ∴ x= b/2 __________________________ Substituting value of x in (iv), We get, => x - y = b - a => b/2 - y = b - a => y = a + b/2 - b => y = a - b/2 Chirantan the right answer is x=b square/5a,y=-a- 4b/5b..Your answer is wrong |
|